Effects of salicylates and aminoglycosides on spontaneous otoacoustic emissions in the Tokay gecko.
نویسندگان
چکیده
The high sensitivity and sharp frequency discrimination of hearing depend on mechanical amplification in the cochlea. To explore the basis of this active process, we examined the pharmacological sensitivity of spontaneous otoacoustic emissions (SOAEs) in a lizard, the Tokay gecko. In a quiet environment, each ear produced a complex but stable pattern of emissions. These SOAEs were reversibly modulated by drugs that affect mammalian otoacoustic emissions, the salicylates and the aminoglycoside antibiotics. The effect of a single i.p. injection of sodium salicylate depended on the initial power of the emissions: ears with strong control SOAEs displayed suppression at all frequencies, whereas those with weak control emissions showed enhancement. Repeated oral administration of acetylsalicylic acid reduced all emissions. Single i.p. doses of gentamicin or kanamycin suppressed SOAEs below 2.6 kHz, while modulating those above 2.6 kHz in either of two ways. For ears whose emission power at 2.6-5.2 kHz encompassed more than half of the total, individual emissions displayed facilitation as great as 35-fold. For the remaining ears, emissions dropped to as little as one-sixth of their initial values. The similarity of the responses of reptilian and mammalian cochleas to pharmacological intervention provides further evidence for a common mechanism of cochlear amplification.
منابع مشابه
Interactions between Hair Cells Shape Spontaneous Otoacoustic Emissions in a Model of the Tokay Gecko's Cochlea
BACKGROUND The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of ...
متن کاملModeling Stimulus-Frequency Otoacoustic Emissions in the Gecko
Although lizards lack the basilar-membrane traveling waves evident in mammals, their ears produce stimulus-frequency otoacoustic emissions (SFOAEs) with latencies comparable to those measured in many mammals (1–2 ms or greater). To probe the origin of these relatively long OAE delays, we developed a model of SFOAE generation in the gecko. The model inner ear comprises a collection of linear, co...
متن کاملA Comparative Study of Evoked Otoacoustic Emissions in Geckos and Humans
Models of otoacoustic emission (OAE) generation mechanisms often attribute important features of OAEs to waves traveling along the cochlear partition. Since the lizard basilar papilla manifests no obvious analog of the mammalian traveling wave, detailed characterization of lizard OAEs offers an important opportunity to test and extend our knowledge of emission mechanisms. We report otoacoustic ...
متن کاملCoherent reflection without traveling waves: on the origin of long-latency otoacoustic emissions in lizards.
Lizard ears produce otoacoustic emissions with characteristics often strikingly reminiscent of those measured in mammals. The similarity of their emissions is surprising, given that lizards and mammals manifest major differences in aspects of inner ear morphology and function believed to be relevant to emission generation. For example, lizards such as the gecko evidently lack traveling waves al...
متن کاملA functional study on gentamicin-related cochleotoxicity in its conventional dose in newborns.
UNLABELLED The early identification of hearing impairment allows for an intervention still in the 'critical' and ideal period of hearing and language stimulation. Pediatric ototoxicity is a very controversial topic. There have been variable percentages of ototoxicity cases in children with different aminoglycosides antibiotics. The main pediatric groups whom receive aminoglycosides are newborns...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 1 شماره
صفحات -
تاریخ انتشار 2000